MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2020 Calculator-assumed

Marking Key

© MAWA, 2020

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• June 12th the end of week 7 of term 2, 2020

Section One: Calculator-assumed

Question 8(a)

Solution	
$c = Ae^{-kt}$	
$t = 0, c = 0.03 \Longrightarrow A = 0.03.$	
$t = 36.5, c = \frac{A}{2} \Longrightarrow \frac{A}{2} e^{-k \times 36.5} \Longrightarrow 0.5 = e^{-k \times 36.5} \Longrightarrow k \approx 0.019.$	
Mathematical behaviours	Marks
uses initial condition to construct equation and solves for A	1
constructs equation related to half life	1
solves for k	1

Question 8(b)

(2 marks)

Solution	
For isotope B, $A = 0.02$.	
$0.5 = e^{-k \times 62.9} \Longrightarrow k \approx 0.011.$	
Solving	
$0.02e^{-0.011} = 2 \times 0.03e^{-0.019t} \Longrightarrow t \approx 137.3$	
Hence approximately 137 years from now.	
Mathematical behaviours	Marks
states equation to be solved	1
 solves for t and states time (in years) 	1

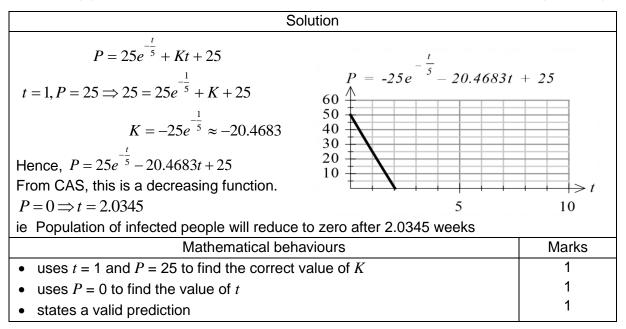
(3 marks)

Question 9(a)

(2 marks)

Solution	
$\frac{dP}{dt} = -5e^{-\frac{t}{5}} + K \implies P = 25e^{-\frac{t}{5}} + Kt + d$	
$t = 0, P = 50 \Longrightarrow 50 = 25e^0 + d \Longrightarrow d = 25$	
$-\frac{t}{2}$	
$\therefore P = 25e^{-5} + Kt + 25$ as required.	
Mathematical behaviours	Marks
anti-differentiates the derivative function correctly	1
 uses the initial condition to find the constant of integration and deduces the required solution 	1

Question 9(b)


(4 marks)

Solution	
(i) $K = 1, P = 25e^{\frac{t}{5}} + t + 25$	
As $t \to \infty, P \to \infty$ i.e. population of infected people increa	ses indefinitely
(ii) $K = 0, P = 25e^{-\frac{t}{5}} + t(0) + 25 = 25e^{-\frac{t}{5}} + 25$	
As $t \to \infty, P \to 25$ i.e. population of infected people stabili	ses to 25
(iii) $P = K = 1, P = 25e^{-1}$	$\frac{x}{5}$
$60 \qquad \qquad K = 1, P = 25e$	5 + t + 25
50	
40	
$30 - K = 0, P = 25e^{-5} + 25$	5
10 - t	
10 20 30 40 50 60	
Mathematical behaviours	Marks
(i) (i)	1
• recognises that when $K = 1$, and as $t \to \infty, P \to \infty$ ie population of infected people increases indefinitely	I
(ii)	1
• recognises that when $K = 0$ and as $t \to \infty, P \to 25$	1
ie population of infected people stabilises to 25 (iii)	
• correct graph for $K=0$	1
• correct graph for $K = 1$	1

3

Question 9(c)

(3 marks)

Question 10(a)

(3 marks)

Solution	
Area of triangle = $\frac{1}{2} \times x \times x \times \sin 60^{\circ} = \frac{\sqrt{3}x^2}{4}$	
Hence,	
$A = xy + \frac{\sqrt{3}x^2}{4} \qquad \qquad$	
$= x \left(\frac{10 - 3x}{2}\right) + \frac{\sqrt{3}x^2}{4} \qquad \qquad y = \frac{10 - 3x}{2}$	
$ie A = 5x - \frac{3x^2}{2} + \frac{\sqrt{3}x^2}{4} = \frac{(\sqrt{3} - 6)}{4}x^2 + 5x$	
Mathematical behaviours	Marks
determines area of triangle as an exact value	1
 states formula for total area in terms of x 	1
 clearly demonstrates rearrangement of formulae to achieve required result. 	1

4

Question 10(b)

Solution		
$A = \frac{(\sqrt{3} - 6)}{4}x^2 + 5x$	Define $f(x) = \frac{(\sqrt{3}-6)}{4}x^2 +$	-5x
$\frac{dA}{dx} = 2 \times \frac{(\sqrt{3} - 6)}{4}x + 5$	$\frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}(\mathrm{f}(\mathrm{x}))$	done
$\frac{dA}{dx} \approx -2.1340x + 5$	$\frac{\sqrt{3}\cdot x}{2}$	<u>6•x+10</u> 2
$\frac{dA}{dx} = 0 \Longrightarrow -2.1340x + 5 = 0 \Longrightarrow x \approx 2.34.$	solve $\left(\frac{d}{dx}(f(x))=0, x\right)$ {x=2.34304	45699}
$\frac{d^2 A}{dx^2} = -2.134 < 0 \Longrightarrow \text{maximum}$	$ \begin{array}{c} \frac{d^2}{dx^2}(f(x)) \\ -2.1339 \\ f(2.3430) \end{array} $	974596
$x = 2.34 \Longrightarrow A = -1.067 \times (2.34)^2 + 5 \times 2.34 \approx 5.86$	614246	
Hence the maximum area is approximately 5.86 m ² .		
Mathematical behaviours	Marks	
• equates $\frac{dA}{dx}$ to 0 and solves		1
• determines $\frac{d^2 A}{dx^2}$ or otherwise justifies maximum	1	
calculates maximum area		1

Question 11(a)

(4 marks)

Solution	
$\frac{1}{10} + b + \frac{1}{5} + \frac{1}{5} + \frac{2}{5} = 1 \Longrightarrow b = \frac{1}{10}$	
$E(X) = 1 \times b + 3 \times \frac{1}{5} + 4 \times \frac{1}{5} + a \times \frac{2}{5} = 3.5$	
<i>ie</i> $\frac{1}{10} + \frac{3}{5} + \frac{4}{5} + \frac{2a}{5} = 3.5 \Rightarrow a = 5$	
Mathematical behaviours	Marks
equates the sum of probabilities to 1	1
evaluates b	1
• states expression for $E(X)$	1
evaluates a	1

MATHEMATICS METHODS

6

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (5 marks)

Question 11(b)

Solution		
(i)		
$\sigma^{2} = \Sigma(x - \mu)^{2} p(x) = (0 - 3.5)^{2} (0.1) + (1 - 3.5)^{2} (0.1) + (3 - 3.5)^{2} (0.2) + (4 - 3.5)^{2} $	$(.5)^2(0.2)$	
$+(5-3.5)^2(0.4) = 2.85 \Longrightarrow std dev = \sqrt{2.85} \approx 1.69$		
(ii)		
Standard deviation of $3-2X = 2 \times \text{standard deviation of } X = 2 \times 1.69 = 3.38$		
Mathematical behaviours		
(i)		
• states expression to determine the variance of X	1	
evaluates variance		
evaluates standard deviation	1	
(ii)		
states correct result	1	

states correct result

Question 12(a)

(2 marks)

		Solut	ion	
	h	а	$\frac{a^h-1}{h}$	
	0.1	2	0.7177	
	0.01	2	0.6956	
	0.001	2	0.6934	
	0.0001	2	0.6932	
Mathematical behaviours				Marks
completes two rows of the table correctly			1	
completes all rows of the table correctly				1

Question 12(b)

(1 mark)

Solution		
$\lim_{h \to 0} \frac{2^{h} - 1}{h} = 0.693$, correct to 3 decimal places.		
Mathematical behaviours Marks		
evaluates limit correctly	1	

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (2 marks)

Question 12(c)

Solution	
(i)	
$\lim_{h \to 0} \frac{a^h - 1}{h} = 3 \Longrightarrow a \approx 20.1$	
(ii)	
$\lim_{h \to 0} \frac{a^h - 1}{h} = 1 \Longrightarrow a = e$	
Mathematical behaviours	Marks
(i)	
states solution	1
(ii)	
states exact solution	1

Question 13(a)

(1 mark)

				Solution		
	x	1	2	3	4]
	У	2	$2\frac{1}{4}$	$3\frac{1}{9}$	$4\frac{1}{16}$	
	Mathematical				Marks	
•	states all three correct values			1		

Question 13(b)

(4 marks)

Solution	
(i) <u>1 1</u>	
Area of lower rectangles = $2 + 2\frac{1}{4} + 3\frac{1}{9}$	
$=\frac{265}{24}$	
36	
(ii)	
Area of upper rectangles = $2\frac{1}{2} + 3\frac{1}{2} + 4\frac{1}{2}$	
4 9 16	
$=\frac{5428}{1357}$	
$-\frac{1}{576}-\frac{1}{144}$	
Mathematical behaviours	Marks
(i)	
sums the correct rectangles	1
deduces correct result	1
(ii)	
sums the correct rectangles	1
evaluates correctly	1

Question 13(c)

Solution	
Estimated area $=\frac{1}{2}\left[\frac{265}{36} + \frac{5428}{576}\right] \approx 8.39$	
Mathematical behaviours	Marks
 calculates the average of the lower and upper areas 	1

8

Question 13(d)

Solution	
Area under the curve is $\int_{1}^{4} x + \frac{1}{x^{2}} dx = \frac{33}{4} = 8.25$	
Mathematical behaviours	Marks
states the correct answer	1

Question 14(a)

Solution	
Some people would read both digital and print. If these entries are summed those people will be counted twice.	
Mathematical behaviours	Marks
recognises that some people will read both forms of publication	1

Question 14(b)

Solution $322 \approx 32\%$

<i>P</i> (reading print media) = $\frac{6547000}{20289938} = 0.322 \approx 32\%$	
Mathematical behaviours	Marks
uses correct numerator	1
uses correct denominator and deduces result	1

Question 14(c)

Γ

Solution

$X \sim Bin(10, 0.32)$	
$\mu = 10 \times 0.32 = 3.2$	
$\sigma^2 = 10 \times 0.32 \times 0.68 \approx 2.176$	
Mathematical behaviours	Marks
states Binomial	1
calculates mean	1
calculates variance	1

(1 mark)

(1 mark)

(2 marks)

(3 marks)

Question 14(d)

Solution	
(i)	
$P(X=5) \approx 0.1229$	
(ii)	
$P(X > 5) \approx 0.0637$	
(iii)	
${}^{3}C_{1}(0.32)(0.68)^{2} \times (0.32) \approx 0.1420$	
Mathematical behaviours	Marks
(i)	
states correct probability	1
(ii)	
 states appropriate probability expression 	1
calculates probability	1
(iii)	
 states correct expression for first three outcomes 	1
 states fourth outcome and calculates probability 	1

Question 14(e)

(3 marks)

Solution	
Let Y be the random variable denoting the number of people in the 200 who read print	
media.	
$Y \sim Bin(200, 0.32)$	
P(less than 75% do not read) = P(25% or more do read)	
$P(Y \ge 50) = 0.9874$	
Mathematical behaviours	Marks
changes parameter of distribution	1
states appropriate probability statement	1
evaluates	1

Question 15(a)

(2 marks)

Solution	
$\frac{d}{dx}\left[\int_{0}^{x} f(t)dt + \int_{1}^{x} t^{3}f(t)dt\right]$	
$=\frac{d}{dx}\int_{0}^{x}f(t)dt+\frac{d}{dx}\int_{1}^{x}t^{3}f(t)dt$	
$=f(x)+x^3f(x)$	
Mathematical behaviours	Marks
applies linearity for derivatives	1
 applies the Fundamental Theorem and evaluates, stating the correct 	
result	1

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (2 marks)

Question 15(b)

Solution	
$\int_{0}^{x} f(t)dt + \int_{1}^{x} t^{3} f(t)dt = x^{3} + \frac{1}{2}x^{6}$	
$\Rightarrow \frac{d}{dx} \left[\int_{0}^{x} f(t) dt + \int_{1}^{x} t^{3} f(t) dt \right] = \frac{d}{dx} \left[x^{3} + \frac{1}{2} x^{6} \right]$	
<i>ie</i> $f(x) + x^3 f(x) = 3x^2 + 3x^5$	
<i>ie</i> $f(x)(1+x^3) = 3x^2(1+x^3)$	
$ie f(x) = 3x^2$	
Mathematical behaviours	Marks
• differentiates both sides of the equation (or applies result from part (a))	1
determines result	1

Question 16(a)

Solution $a = \frac{dv}{dt} = 0$ dt Mathematical behaviours Marks 1 • states correct answer

Question 16(b)

Solution v(t)10 40 5 $\mathbf{20}$ > t15 20 30 60 -5 $-10 \pm$ 10 + 40 = 50Distance travelled in the first 6 seconds is 50 metres Mathematical behaviours Marks 1 • states correct answer

Question 16(c)

Г

(1 mark)

Solution	
(10+40+20)-5=65	
Displacement after 12 seconds is 65 m	
Mathematical behaviours	Marks
states correct answer	1

(1 mark)

Question 16(d)

Solution	
Distance travelled after 12 seconds is 10+40+20+5 =75 m	
Mathematical behaviours	Marks
states correct answer	1

Question 16(e)

Solution		
At $t = 11$ both the velocity and the acceleration are negative hence the particle is speeding		
up.		
Mathematical behaviours	Marks	
states the particle is speeding up	1	

Question 17(a)

		Solution			
	у	0	1		
	P(<i>Y</i> = <i>y</i>)	$\frac{6}{10}$	$\frac{4}{10}$		
	Mathen	natical behaviours			Mark
completes first probability correctly			1		
completes second probability correctly		1			

Question 17(b)

Solution	
It is a Bernoulli distribution with mean = $\frac{4}{10}$.	
Mathematical behaviours	Marks
states the distribution name	1
states the mean	1

Question 17(c)

Solution	
X = 0,1 or 2	
Mathematical behaviours	Marks
states all values	1

Question 17(d)

Solution	
$P(X = 0) = P$ (not prime and not prime) $= \frac{6}{10} \times \frac{6}{10} = \frac{36}{100}$	
Mathematical behaviours	Mark
calculates probability	1

(1 mark)

(1 mark)

(2 marks)

(2 marks)

(1 mark)

© MAWA 2020

11

(2 marks)

Question 17(e)

(3 marks)

(3 marks)

Solution	
$P(X = 1) = \frac{4}{10} \times \frac{6}{10} + \frac{6}{10} \times \frac{4}{10} = \frac{48}{100} \qquad P(X = 2) = \frac{4}{10} \times \frac{4}{10}$	$=\frac{16}{100}$
Hence $X=1$ is the most likely result.	
Mathematical behaviours	Mark
• calculates $P(X = 1)$	1
• calculates $P(X = 2)$	1
states correct conclusion	1

Question 17(f)

Solution				
Let the random variable <i>F</i> represent the operator's financial position for each game.				
	Γ		[]	
	f	-2	5	
	P(F = f)	52	48	
	I(I'=J)	100	100	
$E(F) = -2 \times \frac{52}{100}$	$+5 \times \frac{48}{100} = 1.36$			
Hence the operat	tor will expect to ma	ake a profit of \$1.36	per game in the lo	ng term. With
500 contestants he will expect to make $500 \times \$1.36 = \680				
	Mathemat	ical behaviours		Marks
determines expected value for 1 game		1		
calculates gain for the day		1		
 states final outcome, with unit and explains 		1		

• states final outcome, with unit and explains

Question 17(g)

(2 marks)

		Solution		
Let k be the char	ge to play the game	е.		
		I		
	f	(<i>k</i> -7)	k	
	P(F = f)	52	48	
		100	100	
$E(F) = (k-7) \times$	$\frac{52}{100} + k \times \frac{48}{100} = 0 =$	$\Rightarrow k - \frac{364}{100} = 0 \Longrightarrow k =$	= 3.64.	
Hence the operation	tor would need to c	harge \$3.64.		
	Mathemat	ical behaviours		Marks
constructs equation for expected value		1		
 solves equati 	on to determine k			1

12

Question 18(a)

13

CALCULATOR-ASSUMED **SEMESTER 1 (UNIT 3) EXAMINATION** (6 marks)

Solution	
(i)	
Since the maximum and minimum values are 14.5 and 9.5	
$a + b = 14.5$ and $a - b = 9.5 \Rightarrow a = 12$ and $b = 2.5$.	
or	
mean line $=\frac{14.5+9.5}{2} \Rightarrow a = 12$ and amplitude $= b = \frac{14.5-9.5}{2} = 2.5$	
Since the period of the oscillation is 12, $c = \frac{2\pi}{12} \approx 0.5236$.	
(ii)	
$S = 12 + 2.5\cos(0.5236t + d),$	
$\frac{dS}{dt} = -2.5 \times (0.5236) \sin(0.5236t + d)$	
$\frac{dS}{dt} = 0 \Longrightarrow \sin(0.5236t + d) = 0$	
Maximum at $t = 11.7$	
$\Rightarrow 0.5236 \times 11.7 + d = 2\pi$	
$d \approx 0.1571$	
Mathematical behaviours	Marks
(i)	
explains exactly one of <i>a</i> and <i>b</i> values	1
• explains both <i>a</i> and <i>b</i> values	1
identifies the period to explain the value of <i>c</i>	1
(ii)	
differentiates correctly	1
• equates to 0 and equates angle to 2π	1
• solves equation to determine <i>d</i>	1

Question 18(b)

(1 mark)

Solution	
On April 30 th , $t = 4$	
$S = 12 + 2.5\cos(0.5236 \times 4 + 0.1571) \approx 10.4$ hours	
So we can expect 10.4 hours of sunlight on April 30 th .	
Mathematical behaviours	Marks
states correct answer	1

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (2 marks)

Question 18(c)

Solution	
$\int_{4}^{6} 12 + 2.5\cos(0.5236t + 0.1571) dt \approx 19.54$	
So average $=\frac{19.54}{2} \approx 9.77.$	
So the average daily amount in May and June is 9.77 hours	
Mathematical behaviours	Marks
uses correct integral	1
states solution	1

Question 18(d)

(3 marks)

Solution		
$S = 12 + 2.5\cos(0.5236t + 0.1571)$		
$\frac{dS}{dt} = -2.5(0.5236)\sin(0.5236t + 0.1571)$		
Hence the maximum value of $\frac{dS}{dt}$ is $2.5 \times 0.5236 \approx 1.31$ hours per month		
Using the increments formula $\delta S \approx \frac{dS}{dt} \times \delta t$, the maximum change in successive days is		
approximately $1.31 \times \frac{1}{30}$ hours.		
i.e. 2.62 minutes (or 3 minutes to the nearest minute).		
Mathematical behaviours	Marks	
• identifies maximum value of $\frac{ds}{dt}$	1	
substitutes into increments formula correctly	1	
states answer to the nearest minute	1	

Question 19(a)

(3 marks)

Solution		
$A(m) = \int_{0}^{m} f(x) dx$ represents the area bounded by the curve, the line $x = 0$ and the line $x = m$. The function is undefined at $m = \pi$ since $\left(1 - \sin \frac{x}{2} = 0\right)$ hence the		
area cannot be calculated		
Mathematical behaviours	Marks	
relates the integral to an area under the curve	1	
• states that $m = \pi$ since <i>f</i> is undefined at $x = \pi$	1	
concludes that the area cannot be calculated – it id not bounded	1	

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (5 marks)

Question 19(b)

Solution		
$f(x) = g(x) \Longrightarrow \frac{2}{1 - \sin\left(\frac{x}{2}\right)} = -(x - 2)^2 + 6$	Define $f(x) = \frac{2}{1-\sin x}$	<u>x</u> 2
$\Rightarrow x \approx 1.4038193$		done
$Area = \begin{bmatrix} 1.4038193 \\ \int_{0}^{1.4038193} (-(x-2)^{2}+6) - (\frac{2}{1-\sin(\frac{x}{2})}) \end{bmatrix} dx$ $+ \int_{1.4038193}^{2} \left[\left(\frac{2}{1-\sin(\frac{x}{2})} \right) - (-(x-2)^{2}+6) \right] dx$ $= 1.2064 + 1.5059$	$\int_{0}^{1.40381927} (g(x)) \int_{0}^{2} (f(x)) \int_{1.40381927}^{2} (f(x)) \int_{1.206378321+1.57}^{1.206378321+1.57} (f(x)) \int_{0}^{1.40381927} (f(x)) \int_{0$	done ;) 1.40381927})-f(x))dx 1.206378321)-g(x))dx 1.505938757
= 2.7123 ≈ 2.71		
Mathematical behaviours		Marks
• determines point of intersection of f and g		1
states appropriate integral to determine first area		1
• states appropriate integral to determine second area		1
evaluates one integral correctly		1
determines correct result to two decimal places		1

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (3 marks)

Question 19(c)

Solution			
$\frac{1.2064 + 1.5059}{2} = 1.3562$	$\frac{1.206378321+1.505938757}{2}$		
Hence $1.4038193 < x < 2$ 1.3562 - 1.2064 = 0.1498 $\int_{1.4038193}^{c} \left[\left(\frac{2}{1 - \sin\left(\frac{x}{2}\right)} \right) - \left(-(x-2)^2 + 6 \right) \right] dx = 0.1498 \Rightarrow x = -0.7550, 1.1253, 1.6282$			
Hence $c \approx 1.63$			
Mathematical behaviours		Marks	
determines average of two areas		1	
states appropriate equation to be solved involving integral		1	
solves equation and concludes solution		1	